Agricultural and environmental applications of cold plasma

Research Directions:

  • Mycotoxin reduction and inactivation of seed-borne pathogens 
  • Seed germination improvement
  • Plasma activated water and micro/ultrafine bubbles as a green fertilizer and sanitizer for greenhouse and indoor farming - hydroponics and aquaponics 
  • Environmental applications of cold plasma

Students/postdocs/research assistants: Ehsan Feizollahi, Shifa Dinesh, Dhanuja Ganegama Lekamge

Collaborators:

Dr. Malinda Thilakaratna (Department of AFNS, University of Alberta)

Dr. Steven Strelkov (Department of AFNS, University of Alberta)

Publicaitons:

  1. Feizollahi, E., Jeganathan, B., Reiz, B., Vasanthan, T., **Roopesh, M. S. Degradation of deoxynivalenol in barley during plasma integrated steeping and the determination of major degradation products (Submitted).  
  2. *Feizollahi, & **Roopesh. M. S. Degradation of zearalenone by atmospheric cold plasma: Effect of selected process and product parameters. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-021-02692-1 
  3. *Feizollahi, E., Mirmahdi, R. S., Zoghi, A., **Roopesh. M. S., & **Vasanthan, T. Review of the anti-nutritional and beneficial qualities of phytic acid, and procedures for removing it from food products. Food Research International. https://doi.org/10.1016/j.foodres.2021.110284
  4. *Feizollahi, E., **Roopesh. M. S. Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2021.1895056
  5. *Iqdiam, B., *Feizollahi, E., *Arif, M. F., Jeganathan, B., Vasanthan, T., Thilakarathna, M., & **Roopesh, M. S. Reduction of T-2 and HT-2 mycotoxins by atmospheric cold plasma and its impact on quality changes and germination of wheat grains. Journal of Food Science. http://doi.org/10.1111/1750-3841.15658
  6. *Feizollahi, E., Misra, N. N., **Roopesh, M. S. Factors influencing the antimicrobial efficacy of dielectric barrier discharge (DBD) atmospheric cold plasma (ACP) in food processing applications. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2020.1743967
  7. *Feizollahi, E., *Iqdiam, B., **Vasanthan, T., Thilakarathna, M., **Roopesh, M. S. Effect of atmospheric-pressure cold plasma treatment on deoxynivalenol degradation, quality parameters, and germination of barley grains. Applied Sciences, 10(10), 3530, https://doi.org/10.3390/app10103530. Invited paper to the special issue “Plasma Techniques in Agriculture, Biology and Food Production” of Applied Sciences Journal.
  8. *Feizollahi, E., Arshad, M., *Yadav, B., Ullah, A., **Roopesh. M. S. Degradation of deoxynivalenol by atmospheric-pressure cold plasma and sequential treatments with heat and UV light. Food Engineering Reviews. Invited paper to the special issue for selected original research papers presented at the 2019 IFT NPD / EFFoST International Nonthermal Processing Workshop & Short Courses. https://doi.org/10.1007/s12393-020-09241-0.
  9. Misra, N. N., *Yadav, B., **Roopesh, M. S., Jo, C. (2019). Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects and applications. Comprehensive reviews in food science and food safety, 18, 106-120. https://doi.org/10.1111/1541-4337.12398